Title: Numerical Analysis

Code Number: NS2204

Credit Hours: 3 (3+0)

Prerequisites: NS1105 Calculus & Analytical Geometry

Semester: 4th

Course Objectives

The course will enable students to:

- 1. Apply different numerical methods to perform polynomial interpolation, curve fitting, differentiation, integration, and estimation of algebraic nonlinear equations
- 2. Solve ordinary differential equations and compute optimum points in optimization problems using numerical techniques.
- 3. Apply a simulation tool to implement various numerical methods.

Contents

Unit 1: Introduction to Numerical Analysis

- 1. Measuring Errors
- 2. Sources of Errors
- 3. Propagation of Errors
- 4. Roundoff & Trunction Errors

Unit 2: Solution of Nonlinear Equations

- 1. Bisection Method
- 2. Newton Raphson Method
- 3. Secant Method
- 4. False Position Method.

Unit 3: Regression and Interpolation

- 1. Linear Regression
- 2. Nonlinear Regression & Adequacy of Regression
- 3. Direct Method Interpolation
- 4. Newton's Method of Interpolation
- 5. Lagrange Interpolation
- 6. Spline Interpolation

Unit 4: Numerical Differentiation and Integration

- 1. Numerical Differentiation: Continuous and Discrete Functions
- 2. Numerical Integration: Trapezoidal Rule, Simpson's Rule, Gauss Quad. Rule
- 3. Improper Integrals

Unit 5: Numerical Solutions of Differential Equations

- 1. Elementary Theory of Initial Value Problems
- 2. Euler's Method
- 3. Finite Differential Method
- 4. Runge Kutta Methods
- 5. Higher Order Differential Equations

Unit 6: Numerical Optimization

- 1. Golden Section Search Method
- 2. Newton's Method
- 3. Direct Search Method

- 4. Gradient Search Method
- 5. Simplex Method.

Teaching-Learning Strategies:

The pedagogical approach to this course relies on face-to-face teaching in a university classroom environment. The lectures are delivered using multimedia support and on white board. Students are engaged and encouraged to solve real world problems using computer-aided tools.

Assignments/Types and Number with calendar:

A minimum of four assignments to be submitted before the written exams for each term. Assessment and Examinations:

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	It takes place at the mid-point of the semester.
2.	Sessional Assessment	25%	It is continuous assessment. It includes classroom participation, attendance, assignments and presentations, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.

Recommended Books:

- 1. Numerical Analysis: By Richard L. Burden, J. Douglas Faires, Latest Edition
- 2. Numerical methods for scientist and engineers by R.W. Hamming (Latest Edition)
- 3. Numerical methods for Engineers by Steven C. Chapra and R. P. Canale (Latest Edition)
- 4. Numerical Methods with Applications by Autar K. Kaw, Latest Edition.